
Recurrent Neural Networks for Sentiment Analysis

Joaqu´ın Ruales

Columbia University
jar2262@columbia.edu

Abstract

We compare LSTM Recurrent Neural Net-
works to other algorithms for classify-
ing the sentiment of movie reviews. We
then repurpose RNN training to learning
sentiment-aware word vectors useful for
word retrieval and visualization.

1 Introduction

Recurrent Neural Networks (RNNs. Described in
more detail in Section 3.1) have proven to be suc-
cessful in many natural language tasks, includ-
ing in learning language models that outperform
n-grams (Mikolov, Karafiat et al., 2011), and in
achieving the state-of-the-art in speech recogni-
tion (Hannun et al., 2014).

Furthermore, Recursive Neural Networks1—a
network structure similar in spirit to Recurrent
Neural Networks but that, unlike RNNs, uses
a tree topology instead of a chain topology for
its time-steps—has been successfully used for
state-of-the-art binary sentiment classification af-
ter training on a sentiment treebank (Socher et al.,
2013).

Motivated by these results, we use Recurrent
Neural Networks for the natural language task of
predicting the binary sentiment of movie reviews.

2 Problem Formulation and Dataset

Our focus is the binary sentiment classification of
movie reviews. Given the text of a polar movie
review, we predict whether it is a positive or neg-
ative review, where positive means the reviewer
gave the movie a star rating of 7/10 or higher, and
negative means a rating of 4/10 or lower.

Later, we tackle the problem of learning
sentiment-aware vector representations of words,

1We avoid referring to these as “RNNs” to avoid confu-
sion

and of using these for visualization and word re-
trieval.

We use a subset of the Large Movie Review
Dataset (Maas et al., 2011). The dataset consists
of 50000 polar movie reviews, 25000 for train-
ing and 25000 for testing, from the IMDb internet
movie database. Due to our limited computational
resources, for each experiment we chose a word
count limit and trained on reviews with at most
that number of words. For testing we used 500 re-
views with arbitrary length chosen at random from
the larger test set.

3 Background

3.1 RNNs

Recurrent Neural Networks (RNNs) are a type of
neural network that contains directed loops. These
loops represent the propagation of activations to
future inputs in a sequence. Once trained, instead
of accepting a single vector input x as a testing
example, an RNN can accept a sequence of vector
inputs (x1, . . . , xT) for arbitrary, variable values
of T , where each x

t

has the same dimension. In
our specific application, each x

t

is a vector rep-
resentation of a word, and (x1, . . . , xT) is a se-
quence of words in a movie review. As shown in
Figure 1, we can imagine “unrolling” an RNN so
that each of these inputs x

t

has a copy of a network
that shares the same weights as the other copies.
For every looping edge in the network, we con-
nect the edge to the corresponding node in x

t+1’s
network, thus creating a chain, which breaks any
loops and allows us to use the standard backpropa-
gation techniques of feedforward neural networks.

3.2 LSTM Units

One of the known instabilities of the standard
RNN is the vanishing gradient problem (Pascanu
et al., 2012). The problem involves the quick de-
crease in the amount of activation passed into sub-
sequent time steps. This limits how far into the

Joaquin Ruales
Disclaimer: this paper was written as part of a school assignment as an exercise in writing conference-style papers. It is NOT a peer-reviewed paper, it was NOT submitted for any conference or journal, and it does NOT make any substantial contributions to the field.

Figure 1: An RNN as a looping graph (left), and
as a sequence of time steps (right).

CHAPTER 4. LONG SHORT-TERM MEMORY 33

Figure 4.2: LSTM memory block with one cell. The three gates are nonlin-

ear summation units that collect activations from inside and outside the block,

and control the activation of the cell via multiplications (small black circles).

The input and output gates multiply the input and output of the cell while the

forget gate multiplies the cell’s previous state. No activation function is applied

within the cell. The gate activation function ‘f’ is usually the logistic sigmoid,

so that the gate activations are between 0 (gate closed) and 1 (gate open). The

cell input and output activation functions (‘g’ and ‘h’) are usually tanh or lo-

gistic sigmoid, though in some cases ‘h’ is the identity function. The weighted

‘peephole’ connections from the cell to the gates are shown with dashed lines.

All other connections within the block are unweighted (or equivalently, have a

fixed weight of 1.0). The only outputs from the block to the rest of the network

emanate from the output gate multiplication.

Figure 2: LSTM Unit (Graves, 2012)

past the network can remember. In order to al-
leviate this problem, Long Short Term Memory
(LSTM) units were created to replace normal re-
current nodes (Hochreiter et al., 1997). A dia-
gram of one of these units is displayed in Figure
2. These units introduce a variety of gates that
regulate the propagation of activations along the
network. This, in turn, allows a network to learn
when to ignore a new input, when to remember a
past hidden state, and when to emit a nonzero out-
put.

4 Sentiment Classification Experiments

Below, we explain the procedure for each of our
experiments for sentiment classification.

4.1 LSTM

We performed our LSTM experiments by extend-
ing the deeplearning.net LSTM sentiment clas-
sification tutorial code, which uses the Python
Theano symbolic mathematical library.

The network takes as input the ordered se-
quence of T words that make up a movie review,
and it performs 4 steps to predict the movie’s sen-
timent—projection, LSTM, mean pooling, and lo-
gistic regression.

1. Projection:

x

t

= Rw

t

where w

t

is the t’th word of the current
review represented as a “one-hot” 10000-
dimensional vector unique to each word (any
word not in the 9999 most common words in
the data is treated as the same word, “UNK”,
to prevent sparseness), and R is a weight ma-
trix that projects each word into to a 128-
dimensional space. Here R is learned during
training.

2. LSTM unit:

˜

C

t

= tanh(W

c

x

t

+ U

c

h

t�1 + b

c

)

i

t

= logistic(W

i

x

t

+ U

i

h

t�1 + b

i

)

f

t

= logistic(W

f

x

t

+ U

f

h

t�1 + b

f

)

C

t

= i

t

⇤ ˜

C

t

+ f

t

C

t�1

o

t

= logistic(W

o

x

t

+ U

o

h

t�1 + b

o

)

h

t

= o

t

⇤ tanh(C

t

)

where ˜

C

t

is the output value of the recur-
rent unit as would be computed by a clas-
sical RNN, i

t

is the LSTM input gate, f

t

is the LSTM forget gate, C

t

is the value
of the internal LSTM memory state cre-
ated by blending the past state (C

t�1) and
the proposed state (˜

C

t

), o

t

is the output
gate, and h

t

is the final output of the
LSTM unit after passing through the output
gate. The symbol “⇤” represents element-
wise multiplication. The parameters that are
learned during training are the weight matri-
ces W

i

, U

i

,W

c

, U

c

,W

f

, U

f

,W

o

, U

o

, and the
bias vectors b

i

, b

c

, b

f

, b

o

.

3. Mean pooling:

¯

h =

1

T

TX

t=1

h

t

4. And finally, logistic regression:

y = softmax(W

y

· ¯h + b

y

)

where weight matrix W

y

and bias vec-
tor b

y

are learned during training. y

is a 2D vector where the first entry is
p(negative|w1 . . . wT

), and the second entry
is p(positive|w1 . . . wT

). While we are us-
ing the softmax function, this formulation is
equivalent to logistic regression.

Figure 3: Word count histogram for training and
testing data. Word counts ranged from 11 to 2820.

The network is trained using stochastic gradient
descent with the AdaDelta update rule, which uses
an adaptive per-dimension learning rate that does
not require manual annealing.

Due to the prohibitively long time it takes to
train this network on all of the reviews in our train-
ing set, for our experiments we trained this net-
work using word count limits of 100, 150, and
300. We saw a rapid increase in running time as
the limit increased since both number of examples
and average example word count grows. Figure 3
shows the distribution of word counts for the full
training and validation set for reference.

4.2 Variations on LSTM

4.2.1 Regular RNN

For this experiment, we replaced all LSTM units
in the above network with classical RNN units to
see if the addition of LSTM brought an advantage
to this specific problem.

4.2.2 “Non-Forgetting” LSTM

For this experiment, we modified the LSTM by
replacing the forget gate with a vector of all 1s,
always preserving the previous state when incor-
porating a new example. This modification repre-
sents the LSTM unit as it was first described, be-
fore (Gers et al., 2000) introduced the forget gate.

4.2.3 LSTM with Max Pooling

For this experiment, we used max pooling instead
of mean pooling of our LSTM unit outputs, setting

¯

h = max

t=1...T
h

t

4.3 SVM

We trained a linear SVM on the data using Bag
of Words features for each movie review. Figure 4
shows our training and validation errors for several
values of the SVM C parameter. The SVM with
the lowest validation error obtained a test error of
0.198. We see from the training error plot that the
SVM is able to achieve zero error on the training
data, so the training examples are linearly separa-
ble in Bag-of-Words feature space when training

Figure 4: Training and validation error for Bag of
Words Linear SVM with a variety of values for c

Figure 5: Training and validation error for Bag of
Words RBF SVM with a variety of values for c

on examples of word count up to 100. However,
this linear hyperplane is not optimal for the prob-
lem as a whole as evidenced of the ⇠ 20% test-
ing error rate achieved. Furthermore, we trained
another linear SVM on the set of all training ex-
amples of arbitrary word count. Additionally, we
trained an RBF kernel SVM, and we show the
training and validation curves in Figure 5.

4.4 Results and Analysis

Table 1 summarizes our classification experiment
results.

Based on these results, we notice that using
LSTM using was not a significant improvement to
using regular RNN units, so the vanishing and ex-
ploding gradients problem might not be significant
when using this network structure and these data.
Similarly, using max pooling had a minimal im-
pact on our results. However, not allowing LSTM
units to forget past internal state did seem to have
a large negative impact in our generalization.

We can see that the linear SVM using Bag
of Words features obtained the best performance,
both when only considering the experiments with
a word limit of 100, and also when considering all
of the experiments in Table 1, so our current RNN
model seems to have been unsuccessful, although
we have yet to see the performance when train-
ing on the entire training set. One disadvantage of
our LSTM network is the large amount of param-

Experiment w limit Error

Regular RNN 100 0.248
LSTM 100 0.236
LSTM 150 0.197
LSTM 300 0.134

LSTM No limit ?

“Non-forgetting” LSTM 100 0.328
LSTM. Max Pooling 100 0.238
Bag of Words Linear SVM 100 0.198
Bag of Words Linear SVM No limit 0.114

Bag of Words RBF SVM 100 0.216

Table 1: Test errors for each of our sentiment clas-
sification experiments. “w limit” is the word limit
per review on the training and validation data. Test
data is the same for all experiments. A “?” means
that the training was taking a prohibitively long
time to finish, so it was halted.

eters it has, which makes the training slow with-
out a proper GPU and might cause serious over-
fitting. It would be beneficial to explore how this
model compares to SVM as the number of exam-
ples increases up until training on all words (given
enough processing power to train the network). It
might also be worth trying an LSTM network with
less weights.

5 Sentiment-Aware Word Vector

Experiments

(Maas et al., 2011) describes an algorithmic
framework for learning word vectors for senti-
ment analysis while also training a binary classi-
fier. As part of a larger semi-supervised multi-task
learning objective that also takes into account se-
mantic similarity, the paper includes a supervised
sentiment-related objective:

max

R, ,bc

|D|X

k=1

NkX

i=1

log p(s

k

|w
i

;R, , b

c

),

where R and w

i

are as in our LSTM network de-
scribed above, is a weight vector, b

c

is a bias
vector, D is the set of all documents, and s

k

is
the sentiment label (0 or 1) for document k in the
training data. The paper uses logistic regression to
represent the classification likelihood based on a
single word:

p(s = 1|w
i

;R,) = logistic(

T

Rw

i

+ b

c

).

The objective function finds the classifier that
maximizes the likelihood of the training data so
that documents are classified correctly, but since
the R matrix is part of the trained variables, the
algorithm also learns the vector representations of
words (the columns of R) that are most useful for
the classification task.

5.1 Word Vectors

An RNN network like the one described in Section
4.1 includes a projection like the one in (Maas et
al., 2011) described above, using a neural network
as its likelihood function. Thus, its training also
produces sentiment-aware word vectors.

These learned word vectors are not only useful
to the algorithm for classification. It is also helpful
for humans, since we can use an embedding tech-
nique to visualize the high-dimensional word vec-
tors in 2D and “see what the algorithm is seeing.”
For our Word Vector experiments, we wanted to
better understand the inner workings of the open-
source movie sentiment classification network in-
cluded as part of the Passage Python library, which
uses a structure like the one in Section 4.1 but
with GRU units instead of LSTM units and us-
ing only the last recurrent output instead of mean
pooling over all of the outputs. We trained that
network and then extracted the word vectors from
the first layer weights. Figure 6 shows a 2D em-
bedding—using T-SNE stochastic dimensionality
reduction—of the word vectors for the 500 most
common words. Based on this visualization, we
can see that the algorithm generally groups highly
polarized words together as expected. However,
the algorithm somewhat unexpectedly groups “1”,
“3”, and “4” with negative sentiment words, and
“10” with positive sentiment words. This most
likely means that some people include the star rat-
ing for the review as part of the review’s text (“I
give this movie 10 stars because...”).

Additionally, we can use the sentiment-aware
word vectors to define a sentiment similarity met-
ric between words. Table 2 shows the five clos-
est words to “lackluster,” “melancholy,” “ghastly,”
and “romantic” according to a cosine similarity
metric on the extracted word vectors, compared to
the results in (Maas et al., 2011).

6 Conclusion

We have compared the use of LSTM Recurrent
Neural Networks to other classification methods

Figure 6: 2D t-SNE Embedding of our learned
sentiment-aware word vectors for the 500 most
common words in our data (top), and a detailed
view of highly polarized regions (bottom). Lighter
data points represent more common words. (Zoom
in for a complete view.)

for binary sentiment classification of movie re-
views. Furthermore, we took advantage of a word
projection layer in the first layer of an RNN to
learn sentiment-aware word vectors, which we
used for word retrieval and visualization.

Future experiments could include training the
LSTM model on the entire training dataset, ex-
perimenting with other topologies and layer sizes,
using a multi-task semi-supervised learning objec-
tive like the one described in (Maas et al., 2011),
and experimenting with manifold-learning tech-
niques for visualization of the word vectors.

References

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000).
Learning to forget: Continual prediction with
LSTM. Neural computation, 12(10), 2451-2471.

Graves, Alex. Supervised sequence labelling with re-
current neural networks. Vol. 385. Springer, 2012.

A. Graves, A. Mohamed, and G. Hinton. Speech recog-
nition with deep recurrent neural networks, ICASSP,
2013.

A. Hannun, C. Case, J. Casper, B. Catanzaro, G.
Diamos, E. Elsen, R. Prenger, S. Satheesh, S.
Sengupta, A. Coates, and A. Ng, Deep Speech:

RNN model (Maas et al., 2011)

Sentiment only Sentiment + Semantic

awful lame
insult laughable

lackluster mess unimaginative
waste uninspired
poorly awful

anticipation bittersweet
feelings heartbreaking

melancholy realism happiness
outline tenderness
whilst compassionate

defined embarrassingly
control trite

ghastly entertained laughably
benjamin atrocious

investigates appalling

definitely romance
favorite love

romantic moving sweet
excellent beautiful
superb relationship

Table 2: Retrieval of five closest words based on
cosine similarity of learned word vectors. Based
on these results, the RNN method seems to con-
sider “lackluster” and “romantic” as polar indica-
tors of negative and positive sentiment on a movie
review, respectively. On the other hand, it does
not seem to consider the words “melancholy” or
“ghastly” as indicators of extreme positive or neg-
ative sentiment felt towards a movie.

Scaling up end-to-end speech recognition, in
arXiv:1412.5567, 2014.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-
term memory. Neural computation, 9(8), 1735-1780.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
(2011). Learning Word Vectors for Sentiment Analy-
sis. The 49th Annual Meeting of the Association for
Computational Linguistics (ACL 2011)

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, S.
Khudanpur. Recurrent neural network based lan-
guage model, In: Proceedings of Interspeech, 2010.

Pascanu, R. and Bengio, Y. (2012). On the difficulty
of training recurrent neural networks. Technical Re-
port arXiv:1211.5063, Universite de Montreal.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013b. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Stroudsburg, PA, October. Asso-
ciation for Computational Linguistics.

